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Dissipative quantum dynamics: solution of the generalized von 
Neumann equation for the damped harmonic oscillator 

M Hensel and H J Korsch 
Fachbereich Physik, Universitit Kaiserslautem, D-6750 Kaiserslautern, Federal Republic 
of Germany 

Received 19 August 1991 

Abtnet. A recently proposed generalized von Neumann equation describing dissipative 
time evolution of quantum systems is applied to a damped and driven harmonic oscillator. 
Utilizing Lie algebraic methods the nonlinear operator equation is solvcd and from this 
solution the behaviour of the mean value (i) is extracted, including both amplitude and 
phaseshift relative to the driving force. A differential equation for (x^) is derived and the 
damping con~fant is identified. 

1. Quantum damping 

In a preceding article [ 11, in the following denoted as paper I, the problem of dissipative 
quantum evolution was studied. A general discussion of the problems encountered in 
previous formulations of quantum dissipation can be found in paper I, where an 
alternative description by a generalized nonlinear von Neumann equation for the time 
evolution of the density operator has been proposed (equations closely related to the 
present ones have been advocated by Beretta [2-7]). In paper I,  simple two- and 
three-state systems have been used to illustrate basic properties of the evolution 
equations. In the present article we will present an application ofthe proposed nonlinear 
equation to one of the celebrated physical model systems, namely the damped harmonic 
oscillator. 

The quantum mechanical description of a damped harmonic oscillator has attracted 
a considerable amount of interest, and a critical comparison of the different approaches 
and results is far beyond the scope of the present article. A selection of relevant results 
can be found in [8-321. 

A considerable amount of work has been devoted to the so-called Caldirola-Kanai 
Hamiltonian [33,34] 

with the time-dependent Schrodinger equation 

The Hamiltonian (1) can be motivated by a quantization of the classical equation of 
motion for the damped harmonic oscillator 

J ~ X  ax -+ y -+ u:x = 0 
a t z  d t  

(3) 
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with the Lagrange function 
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m 
2 

L=-e" (t2- w:x2). (4) 

The problem remains that this derivation is not unique, due to the non-uniqueness of 
the Lagrangian (4). It is obvious that (1) describes simply the quantization of a classical 
particle with exponentially increasing mass and a dissipative system not at all. For a 
discussion of this topic see, for example, [X, 11, 16,19,21]. 

In the present paper the phenomenological nonlinear von Neumann equation for 
irreversible time evolution proposed in paper I is applied to the paradigmatic case of 
a damped harmonic oscillator exploring both the properties of the evoluiion equations 
and of the damped harmonic quantum oscillator. Section 2 recapitulates the basic 
theory of the nonlinear equations; in section 3 these equations are solved for the 
harmonic oscillator under free and constrained evolution. A few numerical studies 
illustrate properties of the obtained solutions. The paper concludes with a short resume 
and an outlook. 

2. Tbe generalized von Nenmann equation 

An important property of irreversible processes is the increase of entropy during these 
processes. Nevertheless, the quantum mechanical evolution equation for the statistical 
operator 6, the von Neumann equation 

d 1  
d t  ih  
- 6 =- [I?, 61 ( 5 )  

with the Hamiltonian fi keeps the (von Neumann) entropy 

($=-Trp^Inp* ( 6 )  

invariant. Therefore, in the preceding paper I the following generalization of ( 5 )  was 
proposed: 

with y E R,. 6 is the (super-) operator describing the dissipative part of time evolution. 
The requirements 

Trp^=l  (8) 

p^'=b (9) 

L% p ,̂0p 2̂) = b(p Î)Qp^2+ b10b(622) (10) 

(the last equation follows from 

A 

for independent, uncorrelatedsystems 1,2) are not sufficient to determine D uniquely. 
There are different forms of D satisfying the above equations, for example 

&) = (S-(S))p^ (11) 
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with the entropy operator 
A 

S=-Inp^ (12) 

&(p^)=t[A, ;]+-(A); (13) 
with an arbitrary self-adjoint operator A([,]+ is the anticommutator). Both forms as 
well as linear combinations will be used in the following. 

and 

For free dissipative time evolution 

the von Neumann entropy is non-decreasing, 

= y((.?) - (@) 3 0 
d t  

because y is positive. 

be converted into the evolution equation 
Using the parameter differentiation technique developed by Wilcox [35], (14) can 

for the entropy operator 3 [ 13. One immediately deduces that the equipartition S = (S)i 
is stationary solution of (16) (if we consider finite-dimensional Hilbert spaces, where 
the normalization is guaranteed). Equation (16) will be solved for the harmonic 
oscillator in the next section. 

For a system in contact with a heat bath of inverse temperature p = l / k T ,  a 
generalization of (14) has been suggested in paper I, namely 

(17) d t  

where the canonical distribution 
A e-BA 
P c = y  

is a stationary solution. 

d 1 

According to (17) the mean value of an observable l? satisfies 

(19) - d t  (B)  =7$ ([B, AI)+ Y [ ( B S )  -(m) - m [ B ,  fil+)-(h)(fi))l+ gj. 
For the Hamiltonian and the entropy 3 we obtain in particular 

(20) 
d -(fi) = y [ ( f i s ) - ( f i ) ( S )  - p ( ( A * ) - ( f i ) * ) ] +  
dt 

and 

Equation (21) shows that the entropy is not generally an increasing function of time 
for the evolution (17). 
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3. The damped harmonic oscillator 

In this section we discuss the application of (16) and (17) to the forced harmonic 
oscillator 

M Hensel and H J Korsch 

with creation and annihilation operators 

F ( t )  is the driving force, for which we assume in the following the form 

F(t)=FocosClt .  (25) 

3.1. Free dissipative evolution 

To solve (16) we will use the concept of a dynamical Lie algebra ([36,37] and references 
therein). This dynamical algebra is defined as the "!lest Fiealgebra 3 generated by 
the Hamiltonian of the system. With abbreviations To= 1, r, = a^'a^+f, r2 = 6' and 
r3 = Ci, and from the well known commutator relations 

(26) 

(27) 

(28) 

A A  [r,, r,] =[dtCi+f, 2 1  = it = f, 

[r2, r,] = [a^ ' ,  81 = 1 =To 

[f,, f,]=[i'Ci+f, i]= -6= - f3  
* . .  L .  

we immediately deduce 
* * ^ A  z= {i, ita^+;, it, a*) = {ro, r,,  r2, r3}. 

k *  The non-vanishing structure constants Cn, defined by [Pi, fj]=xk curk, are c&= 
-Ct3 = C:, = -C; ,  = C: ,  = -C: ,  = -C;3 = 1. In this notation the Hamiltonian (22) is 
written as 

with f i o - = h , , h , ( t ) = h , ( t ) = h ( t ) = - F ( f ) ~ .  Assuming that the entropy 
operator S is an element of the dynamical algebra 

3 

k=O 
i= 1 Akfk 

(16) can be easily solved: 
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Comparing coefficients we obtain 

1 3 

A O = T  h ( t ) ( A ,  - A 3 ) +  y A j ( P j )  Ih j = ,  
(33) 

A I  = - yA,  (34) 

(35) 

(36) 

1 
A,=-(y+iw)A,+-h(f)A, 

h 

i 
fi  

A, = -(y-iw)A3-- h ( t ) A , ,  

Since 

Ao=InTr exp - AkTk [ ( k I 1  >I (37) 

is uniquely determiled by the normalization of 6, we can omit (33) in the following. 
Self-adjointness of S requires 

r T 1 = A ,  (38) 

rT, = A, (39) 

which is conserved in time since A,=x3 and A, = x ,  from (34)-(36). 

parts Re A, and Im A, : 
From (35) and (36) we easily obtain differential equations for the real and imaginary 

(40) Re A, = - y  Re A,+o Im A, 

Imh,= - y  Im A , - w  Re A 2 + -  h ( t ) A , .  (41) 
1 
fi 

Equations (34)-(36) have the solutions 

A, ( t )=C,  e-"=Al(0)e-" (42) 

(43) 

The constants C, are determined by the initial conditions ( c2 = C3) .  
Because of the exponential factor e-?', (42)-(44) predict a convergence of; to the 

equipartition distribution 1/Tr i. But this expression is only defined for finite- 
dimensional Hilbert spaces since otherwise Tr 1 is divergent, and convergence to 
equipartition alone is not very meaningful. It is more instructive to consider the mean 
values of physical observahles. 

For the case of the position operator 2 we have to consider the time evolution of 
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The expectation values Tr i f2 ,  Tr p^f3 and, for completeness, Tr p f̂, are derived in 
appendix 1 using the representation 
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resulting in 

A 3  Tr be2 = (p,) -- 
A I  

Using .i2 = A, and = A', we get 

From (50), (40) and (41) one easily obtains a differential equation for the mean 
vaiue (C). Dinlerentiaiion gives 

and a second differentiation 

--(?)= d2 -- w Im A2 + w Im A2Al) J" - 
dt2 ( A I  A: mo 

shows that (2) obeys the differential equation 

which is independent of y. This is exactly the equation of an undamped driven harmonic 

von Neumann equation ( 5 ) .  i.e. for y = 0. Furthermore, it agrees with the class$al 
equation of motion because of Ehrenfest's theorem. Therefore, the term y(S-(S))p^ 
in the generalized von Neumann equation does not influence the average displacement 
(2). The average energy transfer ( H , ) ( f )  = (hw(6 '8+; ) )  and the dispersion ((.f-(x))') 
are, however, y dependent and diverge in the limit f + CO, which is also clear because 
$ approaches the equipartition distribution in this limit. 

For the harmonic driving force (25). (43) can be easily integrated in closed form: 

o.ci!!i?!cr rvith driving fnrce !=(!), which C l E  .!so be derived frnm the non-dissipative 
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f o r R # o  and 

A 2 =  { C2 e-'"'- C I F n p  Smwh [ t sin w t + i  (Siool+t w cos wt)]] e-yz 

at resonance (R = 0 ) .  With initial value A2(0) = 0 (i.e. an oscillator initially at rest) we 
obtain 

cos 01-cos 
ReA2(t)=-C,F, a>- 0 2  

for R # w and 

ReA2(t)=-C,F, - t sin wt  e-" 

for R = w. The average displacement (2)  can therefore be written as 

(57) 

( 5 9 )  
F ,  cos Of-cos Rt -_ 2F, sin[(R+wt/2] sin [(a- o)t /2]  
m n 2 - w 2  m R2-w2 

(2)=- - 

for R # w and 

F, sin w t  

2m w 
(?)=-- t 

on resonance. 

3.2. The damped evolution 

In this section the evolution equation (17), 

d 1  
--p^ d t  =-[& ih -p^l+Y[(2-($)-p^-P(%k p^l+-(fi)-p^)I (61) 

will be solved; The anticommutator [k, 61, precludes a conversion into a differential 
equation for S as for the free dissipative evolution (16). Here we directly attack (61) 
using coherent states la) 

;la)= ala) (62) 

with an arbitrary complex number a. la) can be written as 

in terms of eigenstates In) of d'd:d'a^ln)= nln) .  From (63) one immediately finds 

(ala^'=oi(al (64) 

(ala^tdla)= aa; =lap. (65) 

For -p  ̂ we will again use the exponential form 
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as well as the alternative product of exponentials 
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The two sets of coefficients are interrelated by (see appendix 1) 

gi=Ai 

with the Hermiticity constraints 

g,=g, 
g3 = e-6 - g2. 

The inverse relations are 

Ai=g, 

After these preliminary remarks we now begin solving (61). First, we write down 
the left- and right-hand sides of (61) using the representations S = X?=o hipi  and 
p̂  = II:=, eCgx'i). Then we evaluate matrix elements (a1 . . . la), which-after some 
appropriate transformations-turn out be useful. 

With the product representation (67) one gets 

= -gopop^ -gf$ -e-gop, ,-d, g2p2 e-8.f-,-p^g3g,P3, (77) 
Matrix elements (al.. . la) of (77) can be formed conveniently by normal ordering of 
(77). Here we prefer to convert all matrix elements into expressions proportional to 
(alp*la). Inserting the defintions of the pi into (77) we get 
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and evaluating the right-hand side of (61) we obtain 

where we have used the representations (30) and (31) for the Hamiltonian and the 
entropy operator. If we were able to convert $6' into ttp*, 6; into p̂ d and, finally, 
e-g 0 ne - z ~ p l  6' e-z~Pze-z3P3 into 6'6 we could omit the matrix element (alp^la) from 
(79) to get an expression which solely depends on the coefficients gt, g!, hi and Ai as 
well as on a. Here the gi appear only linear. From this equation we will deduce 
differential equations g, = X , ( g o , .  . . , gJ for the coefficient functions g,. It is shown in 
appendix 2 that the relevant matrix elements are 

(alp^t'la)= ( E  -E) e-gl (alp^la) (83) 
(a16p^la)=(a-g2) e-8i (aIp^Ia) (84) 
(a le-do e-s,i., a*' e-8,i.* e-8'i.' l a )  = E (85) ( .Ip*l.). 

Because of (alp*la)#O (see appendix 2) we obtain from (78)-(85) 

-go-fg, - ag3 - g , ~ ( a  - g 2 )  e-gl - g 2 G  e-=, 

1 = (&$) [ (?+ h( r ) E )  + (h( 1 )  + f ioE )( a -gz) e-gl 

1 
- ~ [ ( ( S ) - P ( ~ ~ ) ) - ( ( A O + ~ A ~ + E A ~ ) + ( E A , + A I ) ( ~ - ~ ~ )  e-gL)] (86)  

and, finally, 
-go-$g,+gl e-gl [ 2Re(Eg2) -aE ] -2e - "Re(Eg2)  

2 
fi 

=- (h( 1 )  Im[E( 1 -e-"*)] -e-81 [ h (  1 )  Im g,+ fio Im(hg,)]} 
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This equation is valid for all complex values of a. Inserting, for example, the five 
special a-values 0,  f l ,  *i into (87) yields five equations which must simultaneously 
be fulfilled: 

M Hensel and H J Korsch 

2 
=- [ F h (  r ) (  1 -e-gl) -e-'L(h(t) Im g2+ ho Re g2)1 

h 

-yP[ho(S+e-"i)-e-"i(h Re g2* ho Im g2)1 

-y[($)-P(A)-A,,- Al(f+e-g~)F2e-g~ Im A2+h,g2 e-'~]. (90) 

Inserting (88) into (89) and adding the resulting expressions for a =*l leads to 

dl = -yg,+ YBhW (91) 

whereas subtraction gives 

Next we insert (88) into (90) and subtract the resultant equations for 01 = *i, yielding 

For g, = Re g,+i im g, one gets with (92j and (93j 

1 
1) +-(e"'- 1) 

h 

(94) I ) + -  i (e",- 1)) -g2[ y( &-T) P ho +io] 
h 

i.e. g, fulfills a linear inhomogeneous first-order differential equation. Equation (91) 
is solved by 
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Using the abbreviations 

(96) 
1 (e8i+l)+- (e8a - 1) 
fi  

(94) reduces to 

g, = x - Yg2 

with the formal solution 

g, ( t )= (  I -" [ 'X(t ' )exp(  \ - "  1'' Y(t")dt") dt'+C,) exp(- \ * "  [ '  n Y(t')di'). (99) 

It should be noted that for F (  t )  = 0, i.e. without a driving force, we get X = 0 and the 
above equation gives an exponential decay of g,. For the harmonic driving force ( 2 5 ) ,  
(99) again can be integrated in closed form, and Re g, and Im g, can then be determined 
by calculating the real and imaginary parts of (99). Let us first solve (99). Since 
g,=y(gfio-g,)  wehaveg,(r)+Pfiw for t+oo.Therefore,weputg,=constant=fifiw, 
i.e. we consider ihe osciiiaior ai consiani iemperaiure or in ihe iimii t - w .  Tnen w e  
obtain 

which converges to ? + i o  for p+O. With the abbreviation 

one gets 

A short glance at (96) bearing g, =constant in mind immediately gives 

(103) 
YP 
2 

1 
f i '  

a =-(e*l+I)=constant 

b = - (egl - 1) =constant (104) 

and finally we get 

In the limit i + m the factor C, e-r-iw' can be omitted ( f > O ) .  But C, is determined 
by the initial value g2(0), so, at this certain point, information about the past of the 
system is lost. By direct integration we get 
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and consequently considering again only the limit f -* m of (106) we obtain 
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After lengthy but straightforward manipulations this can be rewritten as 

with 

- n w  
E =  

[ ( n 2 + f 2  - w2)2+4f2w2]1/2 

This completes the algebraic solution of the evolution equation. 

tion ;=n:=, e-’fPi one gets (see appendix I)  
Let us now consider the behaviour of the expectation value (2). With the representa- 

and, because of g, egl =E, according to (73) this yields the following expression for (2) :  

First we remark that without a driving force g, exponentially decreases as was already 
pointed out and so (a) goes to zero. Inserting (104) and (108) we obtain an expression 
for the long-time limit (&( t ) :  

Notice that in the limit!+ 0 the amplitude 1 reduces to [FG/m!02-w2)!  and the phase 
shift 4 goes to zero, so that (116) becomes a solution of (53). 

The amplitude 2 =  F,B/mw2 of (&(I) shows a typical resonance behaviour as a 
function of the driving frequency a, with a maximum close to 

a,,, = Jo“ (117) 
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/./' ....... 
I /  ........ 

where the value of .i2 is given as 

In the limit fl+ 0 the amplitude tends to the constant value of Fo/ m u 2 .  As an illustrative 
example, figure 1 shows the amplitude B as a function of n/o for four different values 

and a temperature of 300 K, i.e. f i o / k T = 3  x and y / o  =0.01, 0.05, 0.1 and 0.2. 
Note thatf- y in this high-temperature region. One observes the resonance behaviour 
discussed above. In figure 2 the corresponding phaseshifts q5 are shown, which increase 
from zero for low driving frequencies, pass through n/2 at resonance and approach 
n for large driving frequencies. 

in the same way as (53) was deduced. The algebraic manipulations are somewhat more 

of :he damping Con$:Bfi: y 2nd fixed va:fiej of (,j 236 6 = :/kT. l&!e fije uI = :e" Hz 

From ! ! ! 5 !  k? diffcre!Eiz! .q??2tian far !he C!.SSiCl! me22 v2!.c (2) CI!! be dcri:yed 

40 

2 

30 - 
B .  

20 - 

.* 
8 "  - 

0 
0 1 

R I W  

constants: f / o = O . O l  (-),0.05 (---), 0.1 (---),O.Z ( . . . . )  . 
Figure 1. Dependence ofthe amplitude B an the driving frequency R for different damping 

...... . . . . . . .  
0 

0 
C2lU 

Figure 1. Dependence of the phaseshift # on the driving frequency il for different damping 
COnStantS (see figure I ) .  
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involved so that we will briefly outline them. First we obtain 
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mw ephw - 1 =-& 2h wIm&+ah-Reg,f  
mo (e"1-1) 

Inserting (93) for Im g2 and h( I )  = --Fo cos Of leads to 

d2 d 6 -(i) = - w " i ) -  f - (3)+-  cos nt dt2 dr m 

and with Im g2 from (108) we obtain after some algebraic manipulations 

dZ d FO - (P)+ f -(b+ 02(P) =- c COS(Of + 6)  
df2 dr m 

... :.' w1111 

and 

From this equation one can can see that the expectation value (i) follows a classical 
evolution equation, where f defined in (101) plays the role of a classical damping 
constant. 

A remarkable property of (121) is the fact that the damping is proportional to the 
'velocity' d(i)/dt. A closer look at the derivation of (121) shows that this stems from 
the fact that in the term [(S-(&)p'-p(f[f?,p']+-(H)p')] the entropy 9=-In; and 
also therefore the coefficient functions Ai,  i = 1.2.3, appear only linear. 

Since we started with a force F( t )  = Fo cos at acting on our particle, we would 
expect exactly the same force appearing in the differential equation for (b, but only 
if we applied classical arguments and a classical damping process. Actuallyi the 
difference between this classical expectation and our result is a purely quantum 
mechanical effect related to the additional term in the von Neumann equation. The 
amplitude of the force appearing in (121) is modified by a quantum correction factor 
C and an additional phaseshift 6 appears. The well known closed-form solution of 
the evolution equation (121) agrees with the result given in (116). in particular the 
rnl"ri.." 
.*.PL."II  

is valid. 
It is useful to rewrite the damping constantf as 

U 
f=v,, 
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where 

is the equilibrium mean energy of the harmonic oscillator at temperature T. In the 
high-temperature limit as well as in the classical limit h+0 ,  the mean energy U 
approaches kT and f tends to the damping rate 'y. For T + O  the damping term f 
diverges. This is a quantum phenomenon originating from the fact that U cannot fall 
below fho. 

The amplitude C and the phaseshift 8 of the force term appearing in (121) are 
illustrated in figures 3 and 4, calculated with the same parameters as for figures 1 and 
2. The quantum correction C is different from unity only in a small region close to 
resonance: when the correction factor drops down to f. Here (and; of course, at low 

0' I 
0 1 2 

n / w  

Figure 3. Quantum correction factor C of the force amplitude as a function of the driving 
frequency fl for different damping constants (see figure I ) .  

I I 
0 1 2 

n/ w 

Figure 4. Quantum phaseshift S of the force as a function of the driving frequency fl for 
different damping constants (see figure I ) .  
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temperatures) we expect differences between the classical and quantum behaviours. 
The phaseshift correction 6 increaes with increasing y. 

In addition it will be instructive to write down the long-time behaviour of the 
expectation value of the energy. From (47) we find with help of the results (73)-(76) 
and (108) 
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i.e. the equilibrium value plus an oscillatory contribution from the force. Averaging 
over one period we obtain a contribution of (F;/4m02) ( B 2 + i 2 )  from the force 
term. On resonance we have B = h = w/2f; 4 = 5712 and $ = 0, and therefore the 
average energy is 

which is constant in time. 
Finally it should be noted that explicit expressions for the transition amplitudes 

(n'lp^ln) can be easily obtained from (67) using algebraic techniques developed in [39]. 

4. Concluding remarks 

In this article we have studied the quantum mechanical time evolution of a linearly 
forced harmonic oscillator by means of a dissipative nonlinear von Neumann equation 
proposed in a preceding article (paper I). An analytic solution could be derived, which 

The present approach is entirely different from the major ones found in the literature 
[8-341, both in method and in the kind of results obtained. Usually, a wavefunction 
approach is considered, based on a canonical quantization procedure of some appropri- 
ate Hamiltonian which in turn is derived from a Lagrangian generating the classical 
equations of motion. But such a Lagrangian is not unique and so one has to deal with 
problems arising from these ambiguities. This problem is; however, successfully circum- 
vented by the present approach, since it starts with the Hamiltonian of a classically 
undamped oscillator and the whole damping process is included by means of an 
additional term in the von Neuman equation. This term is derived from some simple 
consistency arguments (see paper I), without using further canonical quantization 
methods, which are clearly the source of all the problems mentioned above. 

Even for the harmonic oscillator only in rare cases has the mean value (i) of the 
position operator been worked out up to now. Svinin [9], Brinati and Mizrahi [171 
and Remaud and Hemandez [18] derived a behaviour in accordance with the classical 
case of a damped harmonic oscillator, but without including any driving force. Such 
driving forces are considered by, for example, Khandekar and Lawande [131 and also 
in [20,22,25,28], where various quantities such as the Feynman propagator or the 

is quite remarkabke hecause of the ncn!ineaety of the eqxaticns. 
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transition amplitudes between oscillator eigenstates are calculated. These are of course 
also important and instructive but do not allow a direct comparison of the quantum 
behaviour with its classical counterpart in the simple way achieved in the present 
paper, where explicit expressions not only for the position (i) but even for the phaseshift 
between driving force and resulting motion are derived, in surprising agreement with 
classical results. 

But there are still a lot of open questions and further studies are clearly necessary, 
e.g. a more detailed discussion of the properties of the solution (different parameter 
ranges, classical and semiclassical limits, transition amplitudes, etc.) as well as a careful 
consideration of possible experimental tests of the predictions of the present model 
for dissipative time evolution. Work along these lines is in progress. 

In conclusion it should be recalled that there are various mathematical and concep- 
tual problems related to the derivation and interpretation of the generalized dissipative 
von Neumann equation (see the concluding remarks in paper I). It is hoped, however, 
that this equation will be a useful tool for a discription of quantum dissipation. 
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Appendix 1. Calculation of the traces 

In this appendix we will calculate Tr b, Tr a '̂;;, Tr a^'; and Tr 6; using the representa- 
tion p'=IIl-, (Wei-Norman representation, see [39,40]). We will use the com- 
plete orthonormal system of eigenfunctions In) of a^'; 

a^'a^ln)= nln)  (Al.1) 

with 

a^'ln) = J n f n  + 1) 

t i n )  = .&In - 1) 

(A1.2) 

(A1.3) 

and (e.g. see [38]) 

(A1.4) 

(A1.5) 
m < n. 

After calculating the traces the productpf exponentials p* = do is transformed 
into exponential form $=exp(-Zj=, &Ti) (Magnus representation, see [41]) and the 
coefficient functions are converted into each other. 
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First we evaluate Tr p^: 

Tr p̂  i - g 1 ( d % t i i 2 )  -81a' e-g,s 
i e  e 

(A1.6) 

Using Pochhammer's symbol ( a ) b  = a .  ( a  + 1 ) .  . . ( a  + b - 1 )  and introducing the 
Laguerre polynomials L. (x )  = n ! Z ; = ,  ( - n ) . / ( k ! ) 2 x k  and the abbreviations y 
and x = -g2g3 this can be rewritten as 

In a similar manner we calculate Tr p^a^'a^: 
m 

TI @a^ = (nle--80-81/2 e-B,d'a e-8,a' e-a-3a *t a aln) 
" = O  

(A1.7) 

(A1.8) 

(A1.9) 
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After some simple algebra this leads to 

Tr =Trp^(a^'B+i) 

). (A1.lO) cosh(gJ2) + gzg3 
4 sinh2 (g,/2) 8 sinh'(g,/2) 

Finally, we evaluate Tr if',= Tr 66': 

( A l . l l j  

This implies 

(A1.13) 

and the trace formulae can be simplified to 

1 + g2g3 
(A1.14) Tr ii', =$+- 

e*>- 1 4 sinh2(g!/2) 
g3 e81 TrpT2=-- 
egl- 1 

Tr pr, = -- . 
ego- 1 

(A1.15) 

(A1.16) 
" A  g2 
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For converting the coefficient functions g, of the representation p̂  = n;so e-stpf into the 
coefficient functions A; of the representation p̂  = e x p ( - I t o  A$;) we first make a 
similarity transformation p -̂'Tip  ̂in both representations. A comparison of the results 
yields the desired expressions to  convert the coefficient functions. 

M Hensel and H J Korsch 

Following Wilcox [35] ((6.28) and (6.26)) one has (I=I:=,A,f,) 

(A1.21) 

(A1.22) 

(P.!.23) 

Since the p^-'P;; do not depend on the representation of 6 a comparison of the 
coefficients gives 

gi = A I  (A1.24) 

(A1.25) g2=-(eAl - 1) 

g, = - (1 -e-") 

A2 

A ,  

A 3  

A ,  
(Al.26) 

and therefore the surprisingly simple results 

Tr;=l  (A1.27) 

(A1.28) 

(A1.29) 

(A1.30) 

The method used above is not applicable to convert go into Ao. Using simple grpup 
theoretic methods Gilmore [42] has deduced an expression for Tr [exp( -I:=, Air t ) ] :  

A *  Tr pT3 = -- . 
A ,  

and therefore 

(A1.32) A2A3 g o = A o + T ( l  -A,  -e-A1), 
A I  
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Appendix 2. Calculation of special normal-order forms 

In order to omit the matrix element (aIp^Ia) from (79) we have to convert p̂ 6' into 

techniques as described by Louise11 [43]: 
tip^ into e-s0's, /2e-s,d'd a A t  e-s2d'e-g3d into 6'; using normal ordering 

6; 6 e-soi e-g,(d'd+l/2) e -R26'e-R,d 

= e-8a-&/2 6 e-sLd'd e-82d' 

~ e-sa-s,/2 e-8,a' i  e-z2a' ( a ^ - & )  

- -e -80-S, /2  e - 8 , d ' d d  e-gt e-R#*e-P3a 

e--".d 

= p^( 6 - g2) eC1 (A2.1) 

which implies 

(al6bia)=(alp^la)(a -g2) e-=,. 

From (tip^)'= 66' one immediately deduces 

(al$+)=(alp^ia)(oi -%) 

('42.6) 
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